.RU

6. Электропроводность растворов электролитов - Практикум по физической химии Екатеринбург 2003 г


^ 6. Электропроводность растворов электролитов. 6.1. Краткая теория
Теория, которая лежит в основе современных представлений о растворах электролитов, была развита шведским ученым Сванте Августом Аррениусом (1859-1927). Основным положением теории Аррениуса являются то, что в растворах электролитов имеет место самопроизвольная диссоциация молекул на ионы, в результате чего раствор становится электропроводным. Степень диссоциации () для разных электролитов различна, что сказывается на значениях молярной электропроводности.

Степенью электролитической диссоциации называется отношение числа молекул, распавшихся на ионы, n, к исходному числу растворенных молекул (сумме продиссоциировавших на ионы n и непродиссоциировавших na): =n/(n + na).

Поскольку носителями зарядов в растворах электролитов служат ионы, то протекание электрического тока, т.е. направленное движение зарядов осуществляется с одновременным переносом массы (возникновением потоков миграции). Во избежание осложнений, связанных с одновременной диффузией, изучение электропроводности растворов проводят при использовании переменного тока. При наложении на раствор переменной разности потенциалов ионы колеблются около некоторого среднего положения и gradi=0.

Как и для обычных металлических проводников, сопротивление растворов рассчитывается по формуле:

(6.1)

где  - удельное сопротивление, l – длина проводника (расстояние между электродами), S – площадь поперечного сечения проводника (для растворов – площадь электродов). Величина обратная удельному сопротивлению

æ= (6.2)

называется удельной электропроводностью. Из формул (6.1) и (6.2) следует, что размерность удельной электропроводности [æ] = Ом-1м-1 = См/м и следует ее определение. Удельной электропроводностью называется электропроводность объема раствора, заключенного между двумя параллельными электродами, имеющими площадь 1 м2 и расположенными на расстоянии 1 м друг от друга.

Зависимости удельной электропроводности от концентрации водных растворов некоторых электролитов представлены на рис.6.1.

При c0 величина æ стремится к удельной электропроводности чистой воды, которая составляет приблизительно 10 5 См/м и обусловлена присутствием ионов Н3О+ и ОН-, возникающих при частичной диссоциации воды. С ростом концентрации электролита удельная электропроводность æ сначала увеличивается, что объясняется увеличением числа ионов (носителей заряда) в растворе. Однако, чем больше ионов в растворе, тем сильнее проявляется ион-ионное взаимодействие, приводящее к замедлению движения ионов, а также к их ассоциации. Поэтому почти всегда зависимость удельной электропроводности от концентрации электролита проходит через максимум (рис.6.1).



Рис.6.1. Зависимости удельной электропроводности от концентрации водных растворов некоторых электролитов.


Чтобы выделить эффекты ион-ионного взаимодействия, удельную электропроводность æ делят на концентрацию. В случае если в качестве концентрации выбрана нормальность электролита N=+z+c=-z-c, полученную величину

(6.3)

называют эквивалентной электропроводностью, а при использовании молярной концентрации с, получают молярную электропроводность. При использовании значения удельной электропроводности, выраженной в Ом-1м-1, концентрацию с следует выражать в моль/м3. Поскольку общепринятой размерностью молярной концентрации с является моль/л, а с(моль/м3)=1000*с(моль/л), то это часто учитывают, записывая соответствующие уравнения:

(6.4)

Следует отметить, что часто, для удобства записи удельную электропроводность выражают в Ом-1см-1, тогда в уравнении (6.3) и концентрация с должна быть выражена в моль/см3. А так как с(моль/см3)=с(моль/л)/1000, уравнение (6.3) преобразуется к виду:

(6.5)

Нетрудно получить, что размерностью эквивалентной электропроводности в уравнении (6.4) будет Ом-1м2/г-экв, а в уравнении (6.5) Ом-1см2/г-экв, соответственно.

Таким образом, эквивалентная электропроводность представляет собой электропроводность раствора электролита, содержащего 1 г-экв растворенного вещества и находящегося между двумя параллельными электродами, расположенными на расстоянии 1 м друг от друга. Чем меньше концентрация электролита, тем больший объем его приходится на 1 г-экв и, следовательно, тем бóльшая площадь электродов покрыта раствором. То есть, уменьшение числа носителей тока в единице объема по мере уменьшения концентрации (увеличения разведения) компенсируется увеличением “поперечного сечения” проводника. Поэтому, если бы потоки миграции не зависели от ион-ионного взаимодействия, то  сохранялась бы постоянной при всех концентрациях. В реальных системах эквивалентная электропроводность зависит от концентрации (рис.6.2)



Рис.6.2. Зависимости эквивалентной электропроводности от концентрации водных растворов некоторых электролитов.


При с0 величина  стремится к своему предельному значению о, отвечающему отсутствию ион-ионных взаимодействий. Для иллюстрации этого часто используют графическое представление в координатах =f(1/c) (рис.6.3) В растворах слабых электролитов, где ион-ионные взаимодействия приводят к образованию нейтральных молекул уже при очень низких концентрациях ионов, выход  на предел экспериментально наблюдать не удается.



Рис.6.3. Зависимость эквивалентной электропроводности раствора KCl от разбавления.

Связь электропроводности при конечной концентрации и бесконечно разбавленного раствора можно представить в виде:

(6.6)

где - коэффициент электропроводности.

Из теории Аррениуса следует, что подвижности ионов не зависят от концентрации (т.е. или ), а отличие обусловлено только частичной диссоциацией электролита. Такое приближение приемлемо для слабых электролитов, для которых можно пренебречь ион-ионным взаимодействием, т.е. f1. При этом допущении уравнение(6.6) упрощается:

(6.7)

Для слабого 1-1 зарядного электролита константа диссоциации может быть представлена как:

, (6.8)

а при условии <<1 это соотношение можно упростить

. (6.9)

Выразив из уравнения (6.9) , подставим ее в (6.7) и прологарифмируем:

log=Const -½ log c (6.10)

Такая зависимость эквивалентной электропроводности для слабых электролитов подтверждается экспериментально.

Для разбавленных растворов сильных 1-1 зарядных электролитов Кольраушем было получено эмпирическое соотношение

, (6.11)

находящееся в противоречии с выводами, получаемыми из теории Аррениуса.

Поскольку в растворах электролитов существует как минимум два типа носителей заряда (катионы и анионы) и априори их подвижности (скорости движения) неодинаковы, то, очевидно, что количество электричества, переносимое ионами каждого сорта не одинаково. Количественной оценкой этого факта является величина, которая называется - число переноса данного сорта ионов, представляющее собой долю электричества, переносимую данным сортом ионов:

; (6.12)

Из уравнений (6.12) очевидно, что сумма чисел переноса всегда равна единице:

(6.13)

Для растворов сильных электролитов, учитывая условие электронейтральности и уравнения (6.1-6.3), несложно получить:

; (6.14)

Из уравнений (6.14) видно, что числа переноса определяются относительными подвижностями ионов: чем больше подвижность данного сорта ионов, тем большую долю электричества он переносит.

Если через цепь, состоящую из металлических электродов и раствора электролита пропускать постоянный электрический ток, то на границе раздела фаз неизбежно должен осуществляться процесс трансформации носителей заряда, иными словами некоторые электрохимические реакции, называемые электролизом. Например, при электролизе раствора хлорида меди CuCl2 на отрицательном электроде будут восстанавливаться катионы меди, т.е. к ним присоединяются электроны:

Cu2+ + 2e  Cu. (6.15)

Одновременно на аноде будет происходить окисление хлорид ионов, т.е. отдача ими электронов:

Cl-  Cl + e (6.16)

Соотношения между количеством электричества и количеством веществ, претерпевших превращения в ходе реакций и называются законами Фарадея.

^ 1-й закон. Масса m вещества, претерпевшего превращение на электроде, при прохождении через него постоянного тока, пропорциональна количеству пропущенного электричества, т.е. силе тока и времени.

m = kэхQ = kэхI. (6.17)

Константу пропорциональности kэх называют электрохимическим эквивалентом – это масса претерпевшего превращение на электроде вещества при пропускании 1 Кл электричества.

^ 2-й закон. При прохождении через различные электролиты одного и того же количества электричества массы различных веществ, участвующих в электродных реакциях, пропорциональны их химическим эквивалентам (Эi). Аналитически этот закон можно представить следующим образом:

При Q=Const

(6.18)

Из уравнений (6.15)-(6.18) очевидно, что количество электричества необходимое для того, чтобы масса претерпевшего превращения вещества стала равной эквивалентной массе, должно быть:

Кл (6.19)

Это значение носит название константы Фарадея и представляет собой суммарный заряд одного моля электронов. В случае Q = F первый закон Фарадея принимает вид:

Эi = kэхF (6.20)

Разделив уравнение (6.17) на (6.20) несложно получить:

(6.21)

Уравнение (6.21) называют объединенным выражением 1го и 2го законов Фарадея.

aa-zajchenko-n-v-barishnikov-nastoyashij-sbornik-nauchnih-trudov-posvyashen.html
aaaaavvvvvaaaa-uchebno-metodicheskij-kompleks-po-discipline-himiya-po-specialnosti-050202-65-matematika.html
aagorbachevskij-chagorbachevskij-chelyabinsk-poeticheskij-perevod-i-adaptaciya-issledovanie.html
aakolokolov-ivkarcevavvamosov-remeslennogo-professionalnogo-obrazovaniya-v-rossii.html
aan-de-monitor-leggen-pomeshat-pod-intensivnoe-nablyudenie-stranica-19.html
aan-de-monitor-leggen-pomeshat-pod-intensivnoe-nablyudenie-stranica-8.html
  • thesis.bystrickaya.ru/prilozheniya-upravlenie-portfelem-venchurnih-investicij.html
  • uchenik.bystrickaya.ru/ionometriya-poisk-neispravnostej.html
  • spur.bystrickaya.ru/lichnost-i-bitie-lekciya-vvedenie-v-hristianskuyu-psihologiyu.html
  • uchenik.bystrickaya.ru/kak-nahodit-i-ocenivat-partnera-volfgang-hojer-kak-delat-biznes-v-evrope.html
  • occupation.bystrickaya.ru/obzornaya-avtobusnaya-ekskursiya-po-vene.html
  • testyi.bystrickaya.ru/5-rekomendacii-po-samostoyatelnoj-rabote-uchebno-metodicheskij-kompleks-uchebnoj-disciplini-istoriya-nauki-matematiki.html
  • uchebnik.bystrickaya.ru/v-uluchshenie-dogadki-metodami-ustraneniya-isklyuchenij-chastichnie-isklyucheniya-strategicheskoe-otstuplenie-ili-bezopasnaya-igra.html
  • assessments.bystrickaya.ru/biblioteka-vsemirnoj-literaturi-seriya-pervaya-tom-antichnaya-lirika-stranica-14.html
  • spur.bystrickaya.ru/konkurs-kulinarnoe-iskusstvo-konkurs-konditerskoe-iskusstvo-konkurs-art-klass-konkurs-servis-klass.html
  • learn.bystrickaya.ru/glava-iv-ekonomicheskoe-regulirovanie-v-oblasti-kommentarij-k-federalnomu-zakonu.html
  • learn.bystrickaya.ru/geografiya-odna-iz-drevnejshih-nauk-chelovechestva-vot-uzhe-pochti-5000-let-zanimaetsya-ona-opisaniem-stran-morej-i-okeanov-stranica-16.html
  • knigi.bystrickaya.ru/s-ekologiej-nachistotu-monitoring-soobshenij-smi-ob-obshestvennoj-palate-rf-za-iyun-2011-goda.html
  • notebook.bystrickaya.ru/kak-stat-zdorovim-poznav-radost-zhizni-sinelnikov-stranica-4.html
  • literature.bystrickaya.ru/captain-bezu-glava-4-stranica-6.html
  • znanie.bystrickaya.ru/antikrizisnoe-upravlenie-chast-4.html
  • lesson.bystrickaya.ru/razvitie-logisticheskih-uslug-v-rossii.html
  • bukva.bystrickaya.ru/otmetka-4-utverzhdeno-prikazom-departamenta-obrazovaniya-i-nauki-kostromskoj-oblasti-ot-01-03-2011-g-4231.html
  • zadachi.bystrickaya.ru/rol-narodnoj-kulturi-kak-cennosti-rossijskogo-mentaliteta-v-sisteme-obrazovaniya.html
  • upbringing.bystrickaya.ru/kultura-egipta-4.html
  • knigi.bystrickaya.ru/s-avtor-tengiz-kuprava-www-kuprava-ru-vodnie-tablici.html
  • tests.bystrickaya.ru/lot-3-periferijnoe-oborudovanie.html
  • exchangerate.bystrickaya.ru/-2-svobodnij-polet-planera-pervij-kratkaya-harakteristika-ustrojstvo-i-aerodinamika-planerov.html
  • exchangerate.bystrickaya.ru/lekciya-13-dinamicheskie-i-statisticheskie-zakonomernosti-kratkij-kurs-lekcij-moskva-2006-udk-50-recenzenti.html
  • lesson.bystrickaya.ru/molodezhnie-subkulturi.html
  • universitet.bystrickaya.ru/struktura-programmi-s-ukazaniem-kreditov-129-kreditov10-kreditov-praktika8-kreditov-fizvospitanie3-kredita-itogovaya-attestaciya-ects-225-kreditov-kod-disciplini-shifr.html
  • exchangerate.bystrickaya.ru/analiz-ispolzovaniya-denezhnih-sredstv.html
  • laboratornaya.bystrickaya.ru/razdel-iii-kak-izbezhat-vrachebnih-oshibok-pri-immunoprofilaktike-privivki-mifi-i-realnost.html
  • lektsiya.bystrickaya.ru/proekt-direktor-cpkio-im-m-gorkogo-o-v-zaharova.html
  • composition.bystrickaya.ru/osnovnaya-obrazovatelnaya-programm-po-specialnosti-110401-agronomiya.html
  • knowledge.bystrickaya.ru/metodicheskie-ukazaniya-k-kursovoj-rabote-po-discipline-.html
  • uchitel.bystrickaya.ru/razdel-iiiosobennosti-regulirovaniya-truda-otdelnih-kategorij-rabotnikov-zakon-respubliki-belarus-vstupaet-v-silu-26-yanvarya-2008g.html
  • desk.bystrickaya.ru/pok-042-18-9703-2013-1-baspa-18-09-2013zh.html
  • literature.bystrickaya.ru/ekonomiya-topliva-i-masel-konspekt-lekcij-po-discipline-ekspluatacionnie-materiali-dlya-studentov-specialnostej.html
  • obrazovanie.bystrickaya.ru/prikaz-o-naznachenii-dejstvuyushih-rukovoditelej-gen-direktor-glavnij-buhgalter-kopiya-vipiski-iz-egryul-ili-egrip.html
  • uchenik.bystrickaya.ru/biznes-plan-kompanii-vunderkind.html
  • © bystrickaya.ru
    Мобильный рефератник - для мобильных людей.